Condenser retrofitting relying on CFD

Sometimes, pressure equipment life needs to be extended above the initial design requirements and that represents an engineering challenge. Even less frequently, the design point also changes, making a priority to understand if the original design can withsthand the new operational settings without eroding the equipment performance.  

This article provides a rough view of a project developed by SDEA where CFD modelling was used including a multi-phase solver and in-house developed functions to replicate the real behaviour of the condenser operational conditions. 

This condenser was part of a combined cycle power plant using a Rankine cycle. The aim of the low pressure equipment is to reduce the turbine back pressure and condensate the steam before it gets back into the boiler. A large number of tubes are placed inside the condenser, with a cooling fluid [brine in this case] running inside them. They are below the incoming steam dew point that takes energy away, condensing and separating by gravity the created droplets.

Condenser geometry simplified for CFD

Most condensers have been designed using analytic methods, which usually are lumped models that can reproduce more or less the overall performance but can not provide detailed data on the insights of the process. The main drawback for this approach is that small details like the tube bundle geometry or undetected stagnant high-aged fluid are critical if an optimized condenser is aimed at. The main solution is to build laboratory prototypes and do physical test with the associated high costs.

SDEA engineering team developed a comprehensive CFD model to emulate the condensation process with a high level of detail. Nevertheless, the vessel has two tube bundles with 14726 tubes each, resulting in very expensive computational model if  every single tube was to be included in the final CFD model. 

Bearing in mind the previous information, the main objectives of this study were to predict the velocities, temperature, density and pressure drop distribution inside the condenser for different operating conditions: those for the original design and for the upgraded normal conditions.

Due to the time scales involved in this project a simplified strategy was carefully selected after an exhaustive literature review, in order to achieve a good balance between accuracy and model complexity. 

Condenser geometry CFD mesh

In this section the main assumptions will be explained and justified in order to provide a glimpse of not just SDEA’s CFD capabilities, also the physics understanding and the skills needed to carry on with projects like this and to complete all the goals stated in the project. 

The cooling system is composed by two different bundles with more than 14K tubes. Modelling each single tube is unaffordable, so a porous media approach was assumed for this CFD model. This method does not require solving the detailed flow and temperature fields around each tube.

The tube bundle is regarded as a distributed resistance region. The resistance is based in the theory developed by Patakar and Spalding. Many different models have adopted this approach and it proves to match experimental data with reasonable accuracy.

Porous media submodelling

Porous media for the tube bundle region is modelled by the addition of a momentum source term to the standard fluid flow equations. The source added is a two terms expression including a viscous loss term and inertial loss contribution. Next equation details thematrix form included in the momentum transport balance for the tube bundle and the impingement rods region. 

Due to the obvious anisotropic resistance of the tube bundle an orthotropic [different behaviour on each of the three axes of a Cartesian reference frame aligned with the tube bundle] scheme was adopted. 

A local model was built for each direction and exposed to a wide range of velocities to obtain the equivalent pressure drop for each velocity field condition. The thermal resistance for the tubes has been calculated according to values and correlations obtained by several research papers. These include various terms in order to get the total value of the thermal resistance.

Thermal resistance vs cooling water velocity plot

The water side thermal resistance, Rw, is a function of the coolant water conductivity, flow characteristics and internal diameter of the tube.

The fouling thermal resistance, Rd, has been taken as an average value typically found in this type of condensers in previous research, with the usual value for the tubes heat transfer coefficient varying between 10000 and 35000 S.I. units depending on the position in the bundle.

Thermal resistances detailed above is an important issue. The heat transfer between the cooling tubes and the steam is important, in this matter different phenomena contributes on the overall energy transfer and the condensation flow rate depends due the mass transfer model used  strongly on that heat balance. 

The fluid is modelled as a single phase multi-component gas composed of steam; non-condensate was not included in the model for simplicity.  The condensation mass sink term for the steam fraction is then computed based on the local heat transfer in each control volume according to the frequently used thermal resistance mass transfer model. 

The thermal resistance mass transfer equation included T as the local gas phase temperature, L is the latent heat of condensation of the steam, A is the heat exchange area of the tubes in each control volume, V is the volume of the control volume and R the thermal resistance previously described.

A linear mean coolant temperature profile, Tw, is assumed along the tube bundle and is used to compute the heat transfer between the coolant and gas phase.

Final CFD results including plots and contours

After running different operational conditions cases, a comparison of velocities and temperatures was done to ensure the propper behavior of the condenser under the new set of conditions. Image above shows a glimpse on the type of results and insights you can get from an advanced CFD model like the one devoloped in this case.

Keep your curiosity in good shape.

CFD in HVAC for railway applications

CFD simulation for HVAC studies

When travelling, arriving to your destination on time is not the only concern. Comfort also plays a very important role on the travelling experience and may have an impact on your evaluation about the trip.

Railway transportation is one of the most used systems in the world, from high-speed trains allowing people to travel long distances quickly to underground railway facilitates mass transit for people movement inside a big city.

What all these types of trains have in common is their need for a Heating, Ventilation and Air Conditioning [HVAC] system to ensure environmental comfort inside the vehicle. In order to regulate these conditions, there is a strict normative related to comfort for both the passenger cars and driving cabins.

These regulations, specified in Standards such as EN-13129 or EN-14813, determine the comfort parameters inside the vehicles related to air temperature, humidity, air renovation and surface temperature in a wide range of locations, with the final objective of guaranteeing the maximum passenger comfort during the travel.

Computational Fluid Dynamics [CFD] is a powerful tool that can help assessment in the design phase of HVAC systems, since it can simulate the flow and temperature distribution inside the carriages and any environmental and input conditions even before the system is built. With these previous evaluations, it can be easier to determine optimal flow distribution, impulsion parameters, flow rates, poorly optimized areas and so on. CFD also counts with the advantage of not being restrained by any physical components, so data can be analysed in any spot of the geometry, giving even more additional information that can be useful to the designer than the parameters asked by the Standards.

Both EN-13129 and EN-14813 stablish the probing coordinates and sections during test conditions; so in the CFD model these locations can be fully monitored during the calculation to ensure the convergence and stability, and later on, these data can be compared to the requirements asked in the Standards.

HVAC systems have to meet an exhaustive process of evaluation in terms of thermal homogeneity in a large amount of different locations: seats, aisles, bathrooms, windows, walls, etc. in order to provide a comfortable feeling to the passengers along the ride. Air velocity is also regulated in order to prevent that any area is exposed to any jet stream or, on the contrary, be improperly conditioned. All these requirements involve a deep understanding of fluid dynamics and air behaviour.

SDEA Solutions provides a fully customized service using its knowledge on CFD HVAC modelling, simulation and expertise on Standards to fulfil any client’s request in HVAC systems assessment. Our services include the whole process of designing the geometry from drawings or modification of a given one to the creation of a high quality model to be simulated and a complete analysis of the results, giving the client the precise data they need to know in order to better understand and improve their system, with complete and exhaustive reports made to ensure that every condition and result is well interpreted.


Temperature inside the Equipment in a sterilization process simulation

The implementation of new technologies in the industry is continuously increasing. The transition from the classical model of industry to the Factory of the Future and Industry 4.0 is an increasingly tangible reality. Furthermore, in Galicia, where the food and canning sector is at the forefront, it is necessary to search for and implement these new technologies in order to guarantee industrial competitiveness in the face of commercial pressure from third parties.

The EMTyS project (Thermal Multiprocessing Equipment and CFD/DES Simulation) was born from this idea. The objective of this project is to create a small equipment that can carry out the most common thermal processes in the food sector, such as sterilization, cooking, defrosting, etc.; and to complement it with computer tools and new technologies, such as Computational Fluid Dynamics (CFD), Discrete Event Simulation (DES) and Virtual Reality. In this way, the aim is to model these processes by computer and optimize them before taking them to an operating industrial plant, thus achieving a significant impact on the saving of raw materials and energy consumed.

The EMTyS project, financed through the Conecta Peme 2018 programme of the Galician Agency for Innovation (GAIN) and co-financed by the European Union through the European Regional Development Fund (FEDER), is carried out through the participation of several companies: TACORE, CITEGA, SDEA_Engineering Solutions and SOLTEC INGENIEROS, and with ANFACO-CECOPESCA as the technological centre.

Within this ambitious project, the work of SDEA_Engineering Solutions consists of the creation of a computer application that allows several iterations of different simulations of thermal processes used in the food sector using Computational Fluid Dynamics techniques.

This branch of engineering makes possible to create a 3D model of the Multiprocess Equipment with the product inside and to simulate a great variety of thermal processes using a computer by making use of a GUI (Graphic User Interface) that is easy to use. Thus, it will be possible to analyze the evolution that the products will have over time without having to waste raw material for it. Thanks to this, companies will be able to test their processing “recipes” on the computer in a simple way before testing them on the product.

Combining this with comprehensive monitoring in the simulations, areas within the equipment itself with low thermal output, or process recipes with insufficient energy optimization can be examined. This real-time monitoring in the simulations at any point of the Equipment is totally unfeasible in a real process, so this application becomes an ideal assistant for any manufacturer or process designer who wants to achieve the highest quality in their products without having to give up optimal energy efficiency in their plant.

Real time temperature and pressure evolution graphs during a simulation


CFD contours for back wind

Preventing structural failure due to fluid induced vibration is a common challenge in the design of structures or assemblies exposed to fluid flow. Aero-elasticity theory describes the non-linear interaction between fluid-flow-induced forces and the inertial and damping characteristics of the solid structure. Depending on the nature and frequency of the flow-induced fluid forces a structure may undergo different types of flow induced vibration.

When fluid flows around a bluff body, coherent flow structures develop in the wake of the body which may become detached from the body and shed into its wake creating pressure fluctuations. If the vortex shedding frequency is close to the natural frequency of the structure, a lock-in effect occurs where the vortex shedding frequency synchronises with the natural frequency of the structure.

As a result of lock-in, resonant vortex-induced vibration (VIV) may occur, characterised by large amplitude oscillations which may lead to significant structural damage. Vortex-induced vibration is a major challenge in a range of industries such as; aerospace, oil & gas, power generation, manufacturing and civil infrastructure (such as high rise buildings, long span bridges, etc).

CFD Fluid induced vibration cone flowmeter SDEA

Another common type of flow induced vibration encountered in engineering systems is acoustic resonance vibration resulting from a non-linear interaction between the structure and high frequency pressure oscillations within the acoustic range. This type of FIV range is discussed in Part II of this Flow Induced Vibration series, the current blog entry will be primarily concerned with VIV. Two mitigation strategies may be taken to reduce the risk of damage due to VIV, the engineer can either:

  • Try to modify the flow, creating smaller scale structures whose energy is more rapidly dissipated by the viscosity effect or.
  • Modify the structure’s stiffness in order to move the natural modes of the structure to a higher frequency range and avoid resonance.

In many cases, the challenge arises from a failure of the design process to properly identify and assess any FIV sources and the structural or mechanical components that are at risk of developing FIV problems during installation or service. Computer Aided Engineering (CAE) techniques such as CFD and FEA offer a valuable tool for the fast and reliable assessment of FIV risk as well as an evaluation of potential mitigation strategies quite early on in the design process. This can lead to a reduction in development costs and an increase in the reliability of design.

How to address the problem: CFD and FEA assessment There are different alternatives to evaluate the likelihood of fluid induced vibration lock-in phenomena.

The classic approach uses non dimensional characteristics of the flow represented by invariants like Strouhal’s number. When this method is adopted different flow quantities involving geometric dimensions, velocity and material properties of the fluid are calculated to get a rough estimation for the main frequency excitation of the fluid, and that is directly compared with the natural mode frequencies of the structure. Normally a criteria based on a safety factor is assumed to get a safe design, some of our projects use a target requirement of 25% margin between the shredded fluid frequency and the natural harmonics of the structure. The main drawback of this simplified method is the non-conservative approach of assuming just a single forcing frequency and ignoring the wider frequency composition of the fluid forces. This is illustrated in the frequency plot in the Figure 2 below where the CFD predicted force signal is shown to have a much wider frequency composition than that indicated by a simple Strouhal number calculation.

With advances in CFD such as more accurate hybrid RANS-LES turbulence models and an increase in the available computing power, CFD has emerged as a reliable tool for the accurate simulation of turbulent flows and the associated fluid forces. Transient pressure pattern obtained from the CFD is obtain and using Fourier Analysis, these fluid force signals are decomposed into their spectral representation. Modal analysis using FEA may then be used to determine the natural frequencies of the structure and establish the likelihood of VIV occuring. In addition, FEA based harmonic response analysis may be used to evaluate the amplitude and stresses associated with the structural response. A detailed understanding of the structural response allows for the accurate assessment of structural fatigue life.

CFD FIV cone flowmeter SDEA

With advances in CFD such as more accurate hybrid RANS-LES turbulence models and an increase in the available computing power, CFD has emerged as a reliable tool for the accurate simulation of turbulent flows and the associated fluid forces. Transient pressure pattern obtained from the CFD is obtain and using Fourier Analysis, these fluid force signals are decomposed into their spectral representation. Modal analysis using FEA may then be used to determine the natural frequencies of the structure and establish the likelihood of VIV occuring. In addition, FEA based harmonic response analysis may be used to evaluate the amplitude and stresses associated with the structural response. A detailed understanding of the structural response allows for the accurate assessment of structural fatigue life.

SDEA’s specialist CFD and FEA services allow our clients to integrate ASME based assessments of fatigue life due to FIV into their design processes.

Industry test case: A cone Flow meter A Cone flow meter is a differential pressure flow measurement device widely used in Oil & Gas industry to obtain reliable flow rates for multiphase flows. The cone in the flow meter is subjected to high amplitude alternating turbulent forces that can potentially trigger vortex induced vibration of the cone under normal operating conditions, leading to component failure. A CFD model was used to simulate the most energetic turbulent length scales in the wake of the cone using advanced hybrid RANS-LES models and obtain the transient fluid forces acting on the flow meter structures. A FFT of the force time-series is used to obtain the spectral signature of the fluid forces. FEA based modal analysis is then used to compute the main vibrating modes of the structure as shown in Figure 3 below.

CFD fluid induced vibration SDEA FIV

The first bending mode of the structure – at 48 Hz – is shown to matches one of the high energy frequencies of the fluid force occurring at approximately 40 Hz. There is therefore a high likelihood of lock-in phenomena occurring and leading to resonant VIV unless the design is modified.

A new design configuration was developed, incorporating two additional support legs. This resulted in an increase in the frequency of the natural vibration mode and a reduction in the associated stresses levels.

Figure above shows the final design with stress contours for the first bending mode obtained from an FEA based harmonic response analysis. If you would like to know more about our team’s capabilities FIV and fatigue analysis or to discuss how we can help with your challenges in this area, please do get in touch. If you want to see an animation on FIV please visit our youtube channel and take a look to this video.